Waterloo Chiropractor, Waterloo Physiotherapist, and Massage Therapist (RMT)

What's new

Latest news

Welcome back to my series on strength training for endurance athletes.  Last article took a look at the role (or lack there of) of strength training and our ability to consume oxygen.    

That being said, we still know that strength training does have a positive impact on performance in endurance athletes.  The caveat: it has to be the right type of athlete, with the right type of deficiency conducting it at the right time in training.

So how do we decide how and when to implement strength training?  Learning the science of how it impacts us helps to guide these decisions in the best possible way.  This series most definitely is not a clear-cut, quick-fix answer, nor is it remotely all inclusive.  The more you learn, the more you will realize there is to learn!  Heck, I went to school for 8 years after high school in human-physiology related fields followed by 10 years in working and coaching in the field- and I definitely still feel like the more I learn, the more confusing it can become at times!  

That being said, the more information you arm yourself with, the more you will be able to start to tell the difference between pseudoscientific advice and real, efficient and effective performance-boosting advice.  Our next step toward this direction: How it impacts our exercise economy…  

CLICK HERE to read the rest on the Run Waterloo blog.

By: Sayaka Tiessen, Hons. BKin, MSc (PT)

It’s been a while! Life has been insanely busy the past couple months. You might have noticed on my social media feeds that I have moved my physiotherapy practice to join forces with Delanghe Chiropractic & Health/Health & Performance. Pumped for what this opportunity will bring!

So what’s on the agenda today? In honour of a few patients I have seen recently for a variety of running related injuries, we will be addressing the question: do injured runners run differently?

I will be drawing from an article by Christopher Bramah published in 2018 that looks at this very issue. He compared healthy runners (no reported injury in over 18 months) to injured runners to see if there were any run gait characteristics that were predictive of current injury. He specifically looked at the four most commonly cited soft tissue injuries in the running population: Patellofemoral Pain Syndrome, Iliotibial Band Syndrome, Medial Tibial Stress Syndrome, Achilles Tendinitis.

(Let’s just acknowledge the fact that I haven’t used Microsoft Paint in possibly a decade. How is it still a thing?)
(Let’s just acknowledge the fact that I haven’t used Microsoft Paint in possibly a decade. How is it still a thing?)

You might not have heard of these conditions before, but you have probably experienced them. Here is a quick breakdown of what each of these injuries involve in the simplest of terms:

Patellofemoral Pain Syndrome (PFPS): pain around the patella, aka the knee cap at the front of the knee

Iliotibial Band Syndrome (ITBS): pain at the outside of the knee

Medial Tibial Stress Syndrome (MTSS): AKA Shin Splints (the bane of my existence for many years), pain around the inner part of the bottom 1/3 of the shin.

Achilles Tendinitis (AT): pain at the Achilles tendon.

I have to say, it’s always pretty neat when the findings of a study are similar to what you experience clinically. After analyzing the running biomechanics of the injured and non-injured study participants, Bramah’s team found that the injured runners presented with:

overstride.jpg
A straighter knee and ankle dorsiflexion (toes pulled up to the shin) when landing. This is essentially what we would call overstriding/overreaching while running – your foot is way out in front of your center of mass when you first hit the ground.
forward lean.jpg
Increased forward trunk lean. This can be caused by low back and gluteus maximus weakness/fatigue. We need to strike a balance of leaning forward too much and sitting back like you’re in a La-Z-Boy. Photo is from the Bramah et al. 2018 article.
trendelenburg.jpg
A significant drop in the opposite hip to the one they are standing on, also known as a Trendelenburg. This can be a sign of weakness of the hip stabilizing muscles on the leg they are standing on because they cannot keep the pelvis level. Note that the hip drop was found to be the most accurate at predicting if the runner was injured.

These are pretty important to note because they can actually exacerbate your injury by adding stress to the already injured tissues. Talk about adding insult to injury!

I do have to acknowledge that not every runner is the same. There are some runners that are FAST, have a wicked hip drop, and are totally functional. But as a physiotherapist, it is good for me to keep in mind that these running traits are often present with an injured runner.

What are the implications?

If you are a runner dealing with any type of injury, come in and get assessed. The weather is warming up and nothing is more of a bummer than not being able to get out there and enjoy it.

I do not believe that all runners should run the same way. However, I am not opposed to tweaking your run form to help iron out some of these movements patterns. Gait assessments are a great way to get a second set of eyes on your run form and see if there is anything we can adjust with cueing.

On top of running tips, I always give some homework to help you move better. I typically assign a short list of exercises that are targeted to your concerns – all business, no filler.

Don’t let nagging injuries keep you on the couch! Let’s work together to get you back out there! Click here to book now

By: SAYAKA TIESSEN, HONS. BKIN, MSCPT

In both kinesiology and physiotherapy school, we were taught anatomy. The sheer volume of knowledge was overwhelming. Where does each muscle attach? What nerve controls which muscle? It felt like we were learning everything there was to know about the body. That was incredibly naive of me, as research has plowed on and has shown just how complex our movement systems are.

This post will take a closer look at the infraspinatus, one of your four rotator cuff (RC) muscles. Located just under the boney ridge of your shoulder blade, it is commonly injured, especially in overhead athletes (throwers, climbers, etc).

When I learned about the infraspinatus, we were told that it was a muscle that externally rotates, or turns your arm outward (see below for a picture showing that position) and that it is controlled by your suprascapular nerve. But within the last 20 years or so, researchers have found that the infraspinatus has three distinct regions, each innervated by its own mini branch of the suprascapular nerve; the superior, middle, and inferior infraspinatus subregions.

Why does this matter? Well, turns out that the subdivisions serve slightly different purposes, kind of like how your municipality functions within the province. The province of Ontario has an overarching goals, but Waterloo Region will function in a different way than say the GTA. They also will take on more or less burden depending on the task at hand (regional containment of COVID19 being a prime and timely example). This goes for the subregions too – some sections might turn on more or less depending on the degree of arm elevation, your plane of movement, and resistance.


If that’s the case, then is there a way to make rehab more specific by targeting movements that bias one subregion over another?

I was hoping the answer would be yes, but the research isn’t there yet. It seems as though there are still some discrepancies in the research about which subregion does what. Furthermore, the role of the inferior infraspinatus has yet to be determined.

I have summed up 4 key takeaways below in terms of the roles of the subregions:

  1. All three subregions of infraspinatus are more active the higher your arm is in front of you (eg: they will work harder if you are reaching into a high cupboard, and will work less if reaching for something at waist height).
  2. The superior infraspinatus has a shared insertion on the top of the arm bone with your supraspinatus (another RC muscle that will have its own blog post next). It is thought that both muscles contribute to shoulder stabilization, and that redundancy allows for people to have tears and still be strong.
  3. The middle infraspinatus is more of a pure external rotator.
  4. There is minimal evidence for the role of the inferior infraspinatus.

What does this mean for rehab?

  • When you are dealing with a fresh injury, start with exercises where your arm is low and closer to your body, like farmer’s carries. Any load on your arms will turn on your rotator cuff, and this is the least provoking position to be in.
  • You can start with isometrics (exercises where you are not moving your arm through range) if you cannot even move the shoulder without pain.
  • You don’t have to rotate your shoulder to get your infraspinatus. You can just do an arm raise and it will work all three subregions. The higher your arm, the more the infraspinatus will be working.
  • Generally, strengthening external rotation follows the same principle. The movement of rotating your arm outward will be more challenging the further away your upper arm is from your body (overhead vs tucked into your side).

Check out the video below for 4 different exercises that target the infraspinatus, ranging from lower muscle activation to the most, using the principles I outlined above. Some of these exercises are based on articles published by researchers at the Digital Industrial Ergonomics and Shoulder Evaluation Laboratory at the University of Waterloo (local shout out!).

The next write up will target the supraspinatus – yet another notorious RC muscle that also has 2 subregions despite being super slender. As I eluded to above, superior infraspinatus shares an insertion with supraspinatus, and we will talk about why that is so important for shoulder stability and how you could approach rehabilitation for a torn supraspinatus. Stay tuned!

Sayaka is an evidence based physiotherapist in Waterloo. Click here

to learn more about her!

How long until we officially race again?  I would say probably at least a few weeks, wouldn’t you?  While I’m sure many of you miss toeing the line, there are some positives.  For instance, one of the best ways to take advantage of this extended offseason is to work on weaknesses that are normally tough to address.

Constantly acting in A-race mode, followed by tapering, followed by recovering can definitely result in short term spikes in performance. But often the long term, gradual development is sacrificed.

A great way to take a swing at improving your baseline ability to perform is a full strength program. However, it is not as logical to include when in close proximity to an A-race.  If you’re anything like me, you’ve thought of introducing more strength work throughout the pandemic.  If you’re not like me, you’ve actually done it- good for you, you jerk!

The questions that I get from the team on this topic are endless.  I have written about the topic in short before such as here.  However, I thought it was finally time to take a deep dive into strength training for endurance athletes.

CLICK HERE to read the rest in the Run Waterloo Magazine. 

So, apparently masks are a thing this year!  Despite how much good they can do, there still is some push-back out there.

However, when you look at the evidence, when you’re around other people, if everybody is wearing a mask, the odds of infecting each other goes down.  If you personally are unsure, take a look here, here, here, here, here, here, here, here, here, here, here, here, here, here, here, here, here, here, here, here, here…..

However, a legitimate question that I get asked is how does wearing a mask impact performance when we’re exercising?

CLICK HERE to read the rest in the Run Waterloo Magazine. 

We all get injured.  Muscle strains. Tendonitis. Stress fractures. The list goes on for runners! Not to mention we also have to deal with all the regular life injuries that others have to cope with like headaches, lower back pain and shoulder issues.

Yet, doesn’t it seem that certain people recover faster from injury than others?  Even if two people have exactly the same injury, and do exactly the same things to manage it, the healing time can still be drastically different.

So what separates us?  There is no doubting that physical characteristics, such as age and level of fitness, can impact recovery time.  However, if all things physical are held equal, healing times for the same injury can STILL differ drastically.

Why is this? One possible explanation: the influence of the mind.

CLICK HERE to read the rest in the Run Waterloo Magazine. 

With numbers going up, let’s just do a refresher of our policies that will help to keep the office safe for everybody. We have a number of at-risk and elderly patients, so we really appreciate your cooperation in all of this!
 
  • Masks are now mandatory to enter the building.
  • Complete your online screening questionnaire before entering (or the paper copy upon entering)
  • Do not enter if you have any signs/symptoms of COVID-19 or contact with anybody who has tested or is a suspected positive.  
  • Please let us know if you later learn you test positive or came in contact with a suspected or confirmed positive case in close proximity to your appointment. 
  • Come at exactly your appointment time, no sooner.
    • Patients of Lance Dawson- wait outside until he comes to get you
  • Come in alone
  • Wash your hands or use hand sanitizer upon entering
  • Avoid using the washroom
  • Pay with tap if possible 
  • Avoid bringing in peripheral items as much as possible

As always, we have virtual appointments available for those who are still not comfortable coming to the office.

Thank you so much with your help in making the office safe for all!
 

Nowadays, most runners use some sort of social media as a part of their running lives.  Whether that be posting your runs on Strava, updates on Facebook, or post-run selfies on Instagram, the number of runners who do their thing with an absolute zero online presence seems to be dwindling (but they are out there)!

Over the last few years, I’ve been encountering discussions more and more frequently with the athletes I coach, so I figure now would be a good time to discuss this topic: Is posting on social media about your running a good, bad or neutral thing?

Before I get into some of the research, I would like to preface this article but saying that I don’t have a good answer, as I normally would, with clear science (like how many grams of carbs you should take for optimal performance). The reality is, the use of social media is highly individualized and requires real self-awareness and self-reflection to decide how it works for and against you and your unique situation.

CLICK HERE to read the rest on the Run Waterloo blog. 

cover-copy2

marathon

By Rachel Hannah, RD, DIP. Sports Nutrition IOC

There are a lot of myths around carb loading. That confusion mixed with pre-race nerves, and you’ve got a recipe for a tummy disaster. But carb loading is actually pretty straightforward. There are a few key numbers and rules to follow so that you’ll have all the energy you need to start your quest for that big marathon breakthrough.

What is this “carb loading” I keep hearing about?

First, let’s start with removing the shroud of mystery around the carb load. What the heck is it, and why do marathon runners do it?

Simply put, to carb load is to put a bigger emphasis on getting in an increased ratio of carbohydrates in a couple of crucial days leading up to a big distance race of over about two hours, like a half-marathon for most, and certainly a marathon. The reason for doing this is to make sure your body is full stocked with something called glycogen, which is the energy used by your muscles to fire during your run.

Glycogen is your storage form of carbohydrates and the body can only store up to a certain amount, making fuelling throughout a Marathon distance race very important. Ever heard of the infamous “wall” runners hit when the marathon gets really tough? That wall goes up typically when your body is depleted of glycogen. It’s why races put Gatorade on the course, and its why runners stuff their faces with pancakes the day before the race.

Pancakes… sounds like fun! But how do you get carb loading just right?

Make a Plan

When working with athletes of all ability levels or going into my own marathons, the first thing I do is make a carb loading plan. It’s not necessarily a menu of exactly what to eat, but more of an outline of when to start the load, examples of great food options, and specific numbers that are easy to calculate so that its clear just how many carbs are needed each day before the big race.

Here’s what it looks like:

You should start your carb load 36-48 hours before race morning. So, if the marathon is on a Sunday, begin focusing on carb-rich foods on Friday at breakfast. You’ll hear about athletes going on a “carb depletion” diet for the week leading up to the marathon, starving themselves of glycogen so that, supposedly, their body will horde the sugars thrown at it during the carb load. There are conflicting studies on this strategy, and the science is leading towards saying it produces a negative outcome in most situations, so just eat normally for the period leading up to the carb load.

Keep your calorie intake relatively normal

A common myth is that you should stuff your face during the carb load. This may cause some serious tummy issues and water retention, so instead, just focus on getting the percentage of carbs within each meal and snack to overwhelm the ratio to protein and fat. Fat intake should be kept low (<20% of calories) during the carb load, but you should focus on getting a consistent amount of protein at every meal and snack like you normally would.

Because you’ve reduced you the amount of exercise during the taper, if you maintain your peak season diet, you should be coming in pretty well stocked up on calories.

Focus on the Math

Here’s the magical formula to follow during the carb load:

8-12 g/kg of your body weight of carbs per 24 hours.

So, if you weigh 65 kg (or just over 140 lb.) you should be consuming about the middle range of that formula, meaning 650 g of carbs in a day. A small banana has 14 g of carbs, so you’ll have your work cut out for you to get them all in without starting to hate certain go-to snacks. You’re going to have to find simple ways to make sure you get that amount all in.

Eat what you love

Stick with things you enjoy eating, and I mean really enjoy. Carb loading is the opposite of what you typically would eat to stay healthy. I also need to add carbs that I wouldn’t normally add during the load. This may sound ridiculous, but I will even bring packets of jam or honey with me, and smear them on things like crackers and bread if I feel I’m not hitting my goal carb number for the day.

Use a fitness tracker

Keeping track of all those carbs can be daunting. I recommend either doing the math in advance and making a meal plan for that 48 hours (think of it as fun; you get to eat waffles and maple syrup for dinner!) or use a basic calorie counting app. I rely pretty heavily on MyFitnessPal, a free and fairly detailed nutrition tracking app you can get on your phone that will do the math for you.

Beware of fibre

Crushing carbs can be fun, but you have to be mindful of those with loads of fibre. You’ll want to focus on simple carbs for this crucial 36-48-hour period. You don’t want to pack your guts with fibre before heading to the start line, for obvious reasons.

On the eve of the race, switch to liquid carbs, like fruit juices or sports drink, in order to keep your stomach in check while continuing to get those glycogen stores stocked. Choosing the sports drink you will use during your race is a good idea the night before.
Spread Your Snacking Out

Aim to eat about five or six times per day, spread out, particularly if you have pre-race nerves and your digestion is slowed down. Focus on eating every three-four hours, but feel free to snack a bit in between and take in fluid.

See the carb load as the final fun workout

Just like training, view the carb load as a sort of food workout. Stick to your numbers, stay focused and see it as the final building block in order to have a big breakthrough in your goal race.

Rachel Hannah is a Pan Am Games medallist in the marathon and a registered dietitian.  Learn more about her HERE or book online HERE. 

 

If you have ever had the pleasure of talking with me about sport nutrition, you may have seen my eyes light up and and a big smile on my face as I passionately engage in conversation with you. That is simply because I absolutely LOVE talking about how nutrition can help you reach your athletic goals. I thoroughly nerd-ed out while researching this current topic for the dietitians at the Canadian Sport Institute, of how athletes can use ice slushy’s to keep them cool and increase their performance!

 

Why is Keeping the Body Cool Important?  

There are a few signaling pathways the body can use to increase feelings of fatigue. We all should know that low glycogen (carbohydrate stores) signal fatigue (aka when a marathoner “hits the wall”), but did you know that overheating will do the same thing? The body uses this as a safety mechanism in order to maintain a safe internal temperature. Therefore, exercising in extreme heat presents a few problems.

 

Problem 1. Increased heat results in increased sweating, which can make it difficult to maintain adequate hydration.

 

Problem 2. Dehydration increases core temperature and leads to increased use of glycogen.

 

Problem 3. Dehydration, increased core temperatures and low glycogen levels all lead to early fatigue and decreased performance.

 

To combat the effects of exercising in the heat, there are a few things to think about: stay hydrated as best you can, fuel appropriately with a good carbohydrate plan and lastly, try to slow the rate of increasing body temperature! Hydration in itself results in significantly lower body temperatures compared to letting yourself dehydrate past 2%, however sometimes in the extreme heat, cool water (or warm if its been on the fuel station for a while) might not be enough to preserve your performance. In this blog we will talk how incorporating an ice slushy can help you regulate your body temperature and perform better in the heat!

 

Pre or During Cooling with Ice

Pre-cooling strategies aren’t new and have been used to cool athletes prior to exercise in the heat. Strategies include arm, leg or full body immersion in an ice bath or using an ice vest. Sometimes these are not available or convenient (especially the bath!). Therefore, enter ice slushy! The main purpose of the drink prior to an athletic event is to drive the core temperature down before starting exercise, thus extending the time body temperature will rise to a critical high resulting in delayed fatigue. Pre-cooling provides a heat sink so during exercise more heat can be stored, and if ice is ingested during exercise it can reduce some of the heat storage even further.

 

 

Effects On Core temperature

The research consistently shows that the use of a pre-cooling protocol with an ice slushy results in reductions in rectal temperatures by 0.2-0.7°C. As the athletes began to exercise their core temperature was significantly lower for 25-40 minutes into exercise even when compared to precooling with cold water (4°C). If core temperature is measured from a pill, it results in reductions of core temperature from 1-2°C in upper gastrointestinal tract (Ihsan et al., 2010; Burdon et al., 2013; Stevens et al., 2013; Zimmerman et al., 2017). Pre-cooling seems to have a greater effect if done in a cooler environment, resulting in the best reductions in core temperature (Maley et al., 2018).

 

Performance

Ingestion of an ice slushy as a pre-cooling protocol seems to increase time to exhaustion (TTE) in the heat, as performance can increase 3-19% when compared to cool or room temperature water (4-37°C). (Siegel et al., 2010; Naito & Ogaki., 2017; Takeshima et al., 2017). Naito & Ogaki (2017) showed that pre-cooling with 1.25g/kg ice every 5min for 30min + mid-cooling with 2g/kg ice every 15mins resulted in 16% increase in TTE compared to same protocol with cold water (4°C). Research has also looked at the effect of timing of pre-cooling on cycling performance, where consuming ice after the warm up resulted in significant beneficial effect on performance vs a control beverage (37°C) (Takeshima et al., 2017).

 

Time trials can be improved by 1.7-10% for 10k run times (Mejuto et al., 2018) or 40k cycling (Ihsan et al., 2010). One study compared pre-cooling with 6.7g/kg ice ingestion split into doses consumed every 10minutes for 30minutes compared to water (27°C) showed there was a 6.5% better time trial performance in 40k cycle test (Ihsan et al., 2010).

 

Triathlons

Stevens et al., 2013 look at performance in triathletes in the heat. The trials included a 1500m swim, 1h bike at varied intensities, and a 10k self paced run, in which the 10k run was the performance measure. They consumed 10g/kg ice slushy (made with sport drink) or warm (32-34°C) sport drink during 15-45minutes into the bike portion of the trial, then drank as needed after that. The ice ingestion during the cycle resulted in 2.5% better run performance and was especially evident in the last 5km of the run, which is consistent with most research.

 

How Can I Use This?

7.5g/kg split into doses of 1.25g/kg/5mins for 30mins or 2.5g/kg/5mins for 15mins seems to be the most common protocol used and is well tolerated. The temperature of slushy’s should be -1- +1°C and can been made with plain ice, or sport drink ice cubes, which would be good for carbohydrate consumption for fueling purposes. Keep in mind individual fluid needs, but research also shows that ad libitum fluid intake is higher when a cold drink is offered. Pre-cooling with ice slushy’s should be done as close to exercise as possible, preferably post-warm up in the 15-30 minutes leading up to exercise to maximize the amount of time with lower core temperatures (Takeshima et al., 2017). You could also adopt a mid-cooling strategy to continue to cool your internal temperature.

 

Recipe:

Example for a 60kg person (60 x 7.5=450), pour 450ml of Gatorade into an ice cube tray and freeze. Add a splash of Gatorade and blend. Consume in 3 “doses” 5 mins apart (or sip on it for 15 mins). If you have a thermometer you could make sure it has reached -1-+1 °C for the best results.

Ideas: Freeze sport drink, diluted juice or sweetened coffee and enjoy prior to your event for your fluid, carbs and caffeine hit.

 

Reference:

Burdon CA, Hoon MW, Johnson NA ,Chapman PG, O’Connor HT (2013) The effect of ice slushy ingestion and mouthwash on thermoregulation and endurance performance in the heat. International Journal of Sport Nutrition and Exercise Metabolism.23 458-469

 

Ihsan M, Landers G, Brearley M, Peeling P (2010) Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. International journal of Sports Physiology and Performance. 5 140-151

 

Maley MJ, Minett GM, Bach AJE, Zietek SA, Stewart KL, Stewart IB (2018) Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity. PLoS ONE 13(1): e0191416. https://doi.org/ 10.1371/journal.pone.0191416

Mejuto G, Chalmers S, Gilbert S, Bentley D (2018) The effect of ice slurry ingestion on body temperature and cycling performance in competitive athletes. Journal of Thermal Biology 72: 143-147

 

Naito T, Ogaki T. (2016) Pre-cooling with intermittent ice ingestion lowers the core temperature in a hot environment as compared with the ingestion of a single bolus. Journal of Thermal Biology. 59 13-17.

 

Siegel R, Mate J, Brearley M.B, Watson G, Nosaka K, Lairsen P.B (2010) Ice slurry ingestion increases core temperature capacity and running time in the heat. Medicine and science in sports and exercise. 42(4) 717-725

 

Stevens CJ, Dascombe B, Boyko A, Sculley D, Callister R (2013) Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat. Journal of Sport Sciences. 31(12) 1271-1279

 

Takeshima K, Onitsuja S, Xinyan Z, Hasegawa H (2017) Effect of the timing of ice slurry

ingestion for precooling on endurance exercise capacity in a warm environment. Journal of Thermal Biology. 65 26-31

 

Zimmermann M, Landers GJ, Wallman KE (2017) Crushed ice ingestion does not improve female cycling time trial performance in the heat. International Journal of Sport Nutrition and Exercise Metabolism 26: 67-75

 

Book your appointment

Contact us to book your next appointment

Call Us 519 885 4930